Scientists Explore Origins of 'Supervolcanoes' on the Sea Floor: Ancient Goliaths Blamed for Multiple Mass Extinctions

Despite their global impact, the eruptions' origin and triggering mechanisms have remained unexplained. New data obtained during a recent Integrated Ocean Drilling Program (IODP) expedition in the Pacific Ocean may provide clues to unlocking this mystery.
To explore the origins of these seafloor giants, scientists drilled into a large, 145 million-year-old underwater volcanic mountain chain off the coast of Japan.
IODP Expedition 324: Shatsky Rise Formation took place onboard the scientific ocean drilling vessel JOIDES Resolution from September 4 to November 4, 2009. Preliminary results of the voyage are emerging.
"'Supervolcanoes' emitted large amounts of gases and particles into the atmosphere, and re-paved the ocean floor," says Rodey Batiza, marine geosciences section head in the National Science Foundation (NSF)'s Division of Ocean Sciences, which co-funded the research.
The result?
"Loss of species, increased greenhouse gases in the atmosphere, and changes in ocean circulation," says Batiza.
In fall 2009, an international team of scientists participating in IODP Expedition 324 drilled five sites in the ocean floor. They studied the origin of the 145 million-year-old Shatsky Rise volcanic mountain chain.
Located 1,500 kilometers (930 miles) east of Japan, Shatsky Rise measures roughly the size of California.
This underwater mountain chain is one of the largest supervolcanoes in the world: the top of Shatsky Rise lies three and a half kilometers (about two miles) below the sea's surface, while its base plunges to nearly six kilometers (four miles) beneath the surface.
Shatsky Rise is composed of layers of hardened lava, with individual lava flows that are up to 23 meters (75 feet) thick.
"Seafloor supervolcanoes are characterized by the eruption of enormous volumes of lava," says William Sager of Texas A&M University, who led the expedition with co-chief scientist Takashi Sano of Japan's National Museum of Nature and Science in Tokyo. "Studying their formation is critical to understanding the processes of volcanism, and the movement of material from Earth's interior to its surface."
About a dozen supervolcanoes exist on Earth; some are on land, while others lie at the bottom of the ocean. Those found on the seafloor are often referred to as large oceanic plateaus.
Current scientific thinking suggests that these supervolcanoes were caused by eruptions over a period of a few million years or less--a rapid pace in geologic time.
Each of these supervolcanoes produced several million cubic kilometers of lava--about three hundred times the volume of all the Great Lakes combined--dwarfing the volume of lava produced by the largest present-day volcanoes in places like Hawaii.
Since the 1960s, geologists have debated the formation and origin of these large oceanic plateaus. The mystery lies in the origin of the magma, molten rock that forms within the Earth.
A magma source rising from deep within the Earth has a different chemical composition than magma that forms just below Earth's crust. Some large oceanic plateaus show signs of a deep-mantle origin. Others exhibit chemical signatures indicative of magma from a much shallower depth.
The IODP Shatsky Rise expedition focused on deciphering the relationship between supervolcano formation and the boundaries of tectonic plates, crucial to understanding what triggers supervolcano formation.
A widely-accepted explanation for oceanic plateaus is that they form when magma in the form of a "plume head" rises from deep within the Earth to the surface.
An alternative theory suggests that large oceanic plateaus can originate at the intersection of three tectonic plates, known as a "triple junction."
Shatsky Rise could play a key role in this debate, because it formed at a triple junction. However, it also displays characteristics that could be explained by the plume head model.
"Shatsky Rise is one of the best places in the world to study the origin of supervolcanoes," says Sager. "What makes Shatsky Rise unique is that it's the only supervolcano to have formed during a time when Earth's magnetic field reversed frequently."
This process creates "magnetic stripe" patterns in the seafloor. "We can use these magnetic stripes to decipher the timing of the eruption," says Sager, "and the spatial relationship of Shatsky Rise to the surrounding tectonic plates and triple junctions."
Sediments and microfossils collected during the expedition indicate that parts of the Shatsky Rise plateau were at one time at or above sea level, and formed an archipelago during the early Cretaceous period (about 145 million years ago).
Shipboard lab studies show that much of the lava erupted rapidly, and that Shatsky Rise formed at or near the equator.
As analyses continue, data collected during this expedition will help scientists resolve the 50 year-old debate about the origin and nature of large oceanic plateaus.
The JOIDES Resolution is one of the primary research vessels of IODP, an international marine research program dedicated to advancing scientific understanding of the Earth through drilling, coring, and monitoring the subseafloor. The vessel is operated by the U.S. Implementing Organization of IODP, consisting of the Consortium for Ocean Leadership, Texas A&M University, and Lamont-Doherty Earth Observatory of Columbia University.
IODP is supported by two lead agencies: the U.S. National Science Foundation and Japan's Ministry of Education, Culture, Sports, Science, and Technology.
Additional program support comes from the European Consortium for Ocean Research Drilling (ECORD), the Australian-New Zealand IODP Consortium (ANZIC), India's Ministry of Earth Sciences, the People's Republic of China (Ministry of Science and Technology), and the Korea Institute of Geoscience and Mineral Resources.
Something's Wrong With Right Whales
These right whales in the waters around Peninsula Valdés are amidst the largest die-off of great whales ever recorded. Whatever is killing them remains unknown.
About 88 percent of the whale deaths were calves that were less than three months old. Curiously, many of the corpses had unusually thin layers of blubber. The deceased calves found comprise almost a third of all right whale calve sightings in the last 5 years. In 2009, the Scientific Committee of the IWC identified the die-off as a management priority.
"Península Valdés is one of the most important calving and nursing grounds for the species found throughout the Southern Hemisphere," said Dr. Howard Rosenbaum, director of the WCS's Ocean Giants Program and a member of the IWC's Scientific Committee. "By working with the government of Argentina, the Province of Chubut, the IWC, and our diverse team of experts and specialists, we can increase our chances of solving this mystery, the critical next step to ensuring a future for this population of southern right whales."
This week a team of whale and health experts from the Wildlife Conservation Society joined experts from other organizations at a workshop to try to solve this perplexing problem. The International Whaling Commission sponsored the workshop, which convened in Puerto Madryn.
"We need to critically examine possible causes for this increase in calf mortality so we can begin to explore possible solutions," said Dr. Marcela Uhart, associate director of WCS's Global Health Program and one of the early founders of the program that discovered the whale deaths. "Finding the cause may require an expansion of monitoring activities to include the vast feeding grounds for the species."
Around one-third of the estimated population of right whales in the Southern Hemisphere use the protected bays of Península Valdés (a World Heritage Site) as a calving and nursing habitat between the months of June and December.
The southern right whale is one of the world's great conservation success stories. Unlike the North Atlantic and North Pacific right whales (both of which number in the low hundreds), southern rights have managed to rebound from centuries of commercial whaling, with populations growing at approximately 7 percent annually since 1970. Growing up to 55 feet in length and weighing up to 60 tons, the southern right whale is now the most abundant species of right whale in the world.
But ensuring their long-term survival may require solving this issue quickly. These charismatic animals are also the focus of a thriving eco-tourism industry along Argentina's Patagonian coast.
The workshop participants will consider many hypotheses on the cause or causes of the calf deaths. Possible explanations might include biotoxins, disease, environmental factors at their nursing grounds, and potential variations in prey availability at the whales' distant feeding grounds.
Planet-Like Object Found Circling a Brown Dwarf
Kamen Todorov of Penn State University and co-investigators used the keen eyesight of the Hubble Space Telescope and the Gemini Observatory to directly image the companion of the brown dwarf, which was uncovered in a survey of 32 young brown dwarfs in the Taurus star-forming region. Brown dwarfs are objects that typically are tens of times the mass of Jupiter and are too small to sustain nuclear fusion to shine as stars do.
The mystery object orbits the nearby brown dwarf at a separation of approximately 2.25 billion miles (3.6 billion kilometers -- which is between the distances of Saturn and Uranus from the Sun). The team's research is being published in an upcoming issue of The Astrophysical Journal.
There has been a lot of discussion in the context of the Pluto debate over how small an object can be and still be called a planet. This new observation addresses the question at the other end of the size spectrum: How small can an object be and still be a brown dwarf rather than a planet? This new companion is within the range of masses observed for planets around stars -- less than 15 Jupiter masses. But should it be called a planet? The answer is strongly connected to the mechanism by which the companion most likely formed.
There are three possible formation scenarios: Dust in a circumstellar disk slowly agglomerates to form a rocky planet 10 times larger than Earth, which then accumulates a large gaseous envelope; a lump of gas in the disk quickly collapses to form an object the size of a gas giant planet; or, rather than forming in a disk, a companion forms directly from the collapse of the vast cloud of gas and dust in the same manner as a star (or brown dwarf).
If the last scenario is correct, then this discovery demonstrates that planetary-mass bodies can be made through the same mechanism that builds stars. This is the likely solution because the companion is too young to have formed by the first scenario, which is very slow. The second mechanism occurs rapidly, but the disk around the central brown dwarf probably did not contain enough material to make an object with a mass of 5-10 Jupiter masses.
"The most interesting implication of this result is that it shows that the process that makes binary stars extends all the way down to planetary masses. So it appears that nature is able to make planetary-mass companions through two very different mechanisms," says team member Kevin Luhman of the Center for Exoplanets and Habitable Worlds at Penn State University. If the mystery companion formed through cloud collapse and fragmentation, as stellar binary systems do, then it is not a planet by definition because planets build up inside disks.
The mass of the companion is estimated by comparing its brightness to the luminosities predicted by theoretical evolutionary models for objects at various masses for an age of 1 millon years.
Further supporting evidence comes from the presence of a very nearby binary system that contains a small red star and a brown dwarf. Luhman thinks that all four objects may have formed in the same cloud collapse, making this in actuality a quadruple system. "The configuration closely resembles quadruple star systems, suggesting that all of its components formed like stars," says Luhman.
No comments:
Post a Comment